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J .  PHYS.  A ( P R O C .  P H Y S .  SOC.), 1968 ,  S E R .  2 ,  V O L .  1 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Statistical mechanics with topological constraints : I1 

S. F. EDWARDS 
Department of.Theoretica1 Physics, University of Manchester 
MS.  received 13th October 1967 

Abstract. I t  is shown that the full specification of an assembly of long flexible 
molecules, needed for a statistical-mechanical study, requires an infinite set of topo- 
logical invariants, and the first two of these are derived in detail. It is argued that 
these invariants provide a better description of the topology of the system than a 
more intuitively obvious one, for example, to state the condition that a molecule 
contains a single knot is very complicated requiring an infinite number of invariants, 
just as the specification of a function at a point requires an infinite number of Fourier 
coefficients. I t  is shown that the probability of molecules taking up configurations 
with given values for the invariants is a problem in quantum field theory, and that 
for example the first invariant leads to a formalism isomorphic with the electro- 
dynamics of scalar bosons, and the governing differential equations for one and two 
molecules are derived. The  transition from a real polymer to its representation by a 
continuous curve leads to divergences, but these can be absorbed by renormalizing 
the step length and entropy per monomer; within these two changes the topological 
properties are independent of monomer structure. 

1. Introduction 
In  the previous paper (Edwards 1967 a, to be referred to as I) a discussion was given 

of the effect of topological constraints on the statistical mechanics of long chain molecules 
and the discussion was illustrated by examples where the constraint was caused by the 
configuration of the molecule relative to some given curve in space. This is an incomplete 
discussion since a path in space can have an invariant topology relative to itself, and also 
to obtain topological invariance of one curve relative to two or more others requires a 
knowledge of the ordering of the entanglements. This also leads to a more complicated 
set of differential equations when the curves in question are Brownian motion paths. 

In  this paper we shall try to produce a set of invariants in terms of the intrinsic equations 
of the curves which serve to define topological characters. Then the probabilities of these 
characters being taken up will be shown to satisfy certain differential equations. The  
situation is much more complicated than that of I, but, nevertheless, it appears that it 
must be resolved before any really complete theory of polymers can be attempted. 

2. The specification of knots 
T o  have knots at all, that is configurations of a curve falling into a certain class which 

cannot be transformed into other classes (i.e. different knots, including no knot), one must 
have infinite or closed curves. T o  start the discussion consider two unknotted closed 
curves. Two possible configurations are 

Figure 1 .  

1 5  
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Let the curves be rl(s) and r2(s) where rl(Ll) = r,(O) and r(L,) = r2(0), and let 
r12 = rl-r2. Let us consider 

But curl curl = grad div - v2, and from Green's lemma 

dr, . rI2 1 dr, _ _  - - /dS,.curlgrad- 
]r12 - 14 

= o  
whereas 

Now 
algebraic number of times the curve r2 passes through 1 dS,a f dr2 *(r1-r2) = the surface S,  with rl as perimeter, n, say. (2 . j )  

Therefore 

For example, figure l(a) has n = 0, figure l ( b )  has n = 
to r,, r2, i.e. 

1, according to the sign ascribed 

Figure 2 .  

have opposite signs of n. When one has an explicit integral constraint one can start asking 
for the probability, total entropy, etc., with the constraint integral having a particular n. 
Now, say one had a closed curve in the configurations 

0 @ 
(4 (b) 

Figure 3. 

If one evaluates 
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essentially a self-integral version of the previous form, one obtains different values for 
(a )  and (b) .  For 3(a) one can deform it into a circle when r(sl) x r(sz) is at right angles to 
r(sl)-r(s2), so the value is zero. 3(b)  can be deformed into figure 4, and the two strips 
13,24 can 

Figure 4. 

be brought together to  cancel, giving the final value 477. But it is also possible to have the 
value -4r, since if we consider the two curves 

Figure 5 .  

these give equal and opposite values. If both these knots are on one curve 

Figure 6. 

the integral gives zero, although it is not possible to unknot the curve back to 3(n). A 
double knot can then give the values 877, 0, - 8 ~  to the integral, so it is clear that, whilst 
figure 3(a) implies zero for the integral (2.6), the converse is not the case. T o  understand 
this, let us return to the case of separate closed curves which have no self-knots. For three 
such, consider the equivalent configurations 

Figure 7 .  

These are known as Borrowmean rings. The  integral (2.6) vanishes for each pair, and if 
any one of the curves is removed the remaining pair are indeed free. But the three together 
are clearly locked together, so some new integral has to be found to express this in addition 
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to the previous pair integral. The  situation here is clarified by considering an equivalent 
two-dimensional problem. Let us consider two of the rings expanded infinitely to be 
straight lines which are twisted until parallel. The  third ring (which is now topologically 
a square lashing) can now be shown in projection on the plane perpendicular to the lines 
thus : 

Figure 8. 

The angle swept out by the whole curve around either point is zero, but the curve is clearly 
entangled with the points, i.e. cannot be removed without one of the points passing through 
the curve. Clearly the order in which the points are circumnavigated is giving rise to a 
new topological invariant. A similar situation can arise in which a non-zero angle is 
swept about the one point, whilst zero about the other, with entanglement: 

Figure 9. 

To  pursue this study further in two dimensions it is evident that the appropriate tool is 
the study of functions defined over Riemann surfaces joined along cuts linking the various 
points about which the topology is defined. For example, figure 8 leads to the study of 
elliptic functions (see Ito and McKean 1965). This approach does not appear useful for 
three-dimensional problems such as are encountered in physics, so the rest of the present 
discussion will aim to develop invariants in forms analogous to (2.6) and (2.7). 

Let us consider then a version of figure 7 in which surfaces S,  and S,  containing points 
R, and R, have boundaries rl, r, 

Figure 10. 

Let r3 meet S, at ul, /3, and S, at u,, p2, and also draw on S2 a curve from u, to p2. 
Roughly speaking, one wants to be able to get the sense of r3(s) to change as it passes 
through S,, so that if one starts, say, at e, denoting by B, the integral 

the value 
a2 

Bl.dr3- 1 B,.dr,+ f B,.dr, 
42 Cta 
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is roughly equal to 8 ~ .  So one wants an operator placing the minus sign in front of 
Ji; B,.dr,, and also to add 2[t;dR,.B,, which will exactly produce the 8 ~ .  So one is 
led to consider 

where 0 denotes an arbitrary origin, say the point e. It is readily checked that this is 
indeed an invariant for the change in its value on choosing a different surface S2, or a 
non-topological change in r3(s), can be evaluated by Stokes’ theorem and is zero. The  
expression 

(2.10) i (1 - 2 1; S d ~ ,  , dr3/8(r3’ - R,) 

has the value unity from e to p,, but changes to - 1 as one passes through the surface, 
staying - 1 until E , ,  when it returns to unity. But to be precise one has to add the second 
term, which clearly leads to two circuits. It is also true that for figure 10 the value of 
i$B,.dr3 is zero, so only the surface integrals remain. The  problem is now to transform 
(2.9) into an integral solely containing r3,  rl, r,, dr,, dr,, dr,. It is shown in the appendix 
that the final form is 

(2.11) 

There are, of course, many ways of transforming this expression: in particular, integration 
by parts will interchange the roles of 1 and 2, and in the particular case under consideration 
of figure 10, i.e. figure 7 ,  I,,,, can be recast in a form with symmetry. 

vanish, tells one that 
the curve r,, whilst sweeping out a net angle zero around curve 1, is still entangled around 
curve 1 by virtue of its topological relation with curve 2. We shall not attempt to evaluate 
higher terms, since we are assured that a systematic classification of entanglements and 
knots does not exist, but it is clear, given any configurations, an invariant characterizing 
it can be found. It is also clear that such an invariant will not specify the particular situation; 
it needs an infinite number of these invariants to do this. The  situation is like defining a 
function in terms of its Fourier series: one needs all the Fourier coefficients to specify it. 
Knots are similarly described. By considering the formula for I,,,, with Y, = Y, Y ~ ,  a 
new invariant for a single closed curve is obtained which will distinguish between the 
configurations of figure 6 and figure 3(a),  both of which have the simple invariant (2.7) 
equal to zero. But the vanishing of the first invariant and the non-vanishing of the second 
does not imply the configuration of figure 6. These circumstances are necessary but not 
sufficient. 

The  invariant 112,3 having a non-vanishing value, whilst 113, 

3. The application to statistical problems 
For the thermodynamic properties of a system defined to be created in a completely 

random fashion, the specification of the topology of the system in terms which are common 
to one’s experience is quite unnecessary. For example, suppose one is told that an ensemble 
of strings exists, these strings taking up random flight configurations, and are all closed. 
One can ask for the probability that a string contains a knot. But one could equally ask 
for the probability that a string has a first invariant equal to 47~. As has been noted in the 
previous paper (I), the entropy change of the system under distortion is 
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where p ,  is the probability of-a string having a topological specification T, GT the total 
n-umber of configurations, G, the total number in the new circumstances (usually 
GT/GT = &/PT since the total number of configurations is often not altered in distortions). 
Now, one clearly can never specify all the properties labelled T, so rather than attempt the 
impossible, which is to label knots and entanglements in the simple intuitive way, one 
should do so by using the set of invariants developed here. Thus if the first invariant is 
used it will forbid a pair of infinite molecules going from 

but will not forbid the change to 

Figure 12. 

The  former ought to be the most important effect, but should the latter also matter, then 
the second invariant can be used, and so on. 

Another reason for preferring the system of classification by invariants is that treating 
a polymer, for example, as a random path clearly must fail at small distances when the 
precise molecular structure dominates. I t  appears from the calculations of I and those 
below that the invariants permit one to separate the short-range behaviour from the long, 
just as the renormalization programme in quantum field theory separates self-energy 
effects from the dynamic behaviour of the electron in an electromagnetic field. It is not 
clear, however, whether the question of whether a random path contains a knot is at all 
meaningful in the mathematical idealization of infinitesimal steps. One would guess that 
such questions are not meaningful, getting into unresolved, perhaps unresolvable, questions 
of measure, i.e. the probability of a single knot is always zero since a random path permit- 
ting infinitesimal steps will be ‘unfinitely knotted’. The  invariants, however, appear to be 
meaningful by explicit calculation. Presumably very high-order invariants will depend 
more and more on effects over very small path lengths, and these of course will be blotted 
out by physical requirements. We have no proof, however, of these statements. The 
following explicit calculations will discuss how equations can be deduced to give, for 
example, the probability that two random paths become entangled in the sense that the 
invariants take on specified values. The problem of one random path with topology relative 
to fixed given curves was discussed in I for the first invariant and was found to reduce to 
the solution of a differential equation. The  problem of the topology of a single chain 
relative to itself amounts to the constraint 

{dr(s) x dr(s’)}, {r(s) - r(s’)} 
- = $  

1 ~ s )  4 s 0 1 3  
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being added to the probability of the configuration. Thus 

G&(r, r’; s, s’) = Jcr 1 r(s) = r 

r(s’) = r’ 
(3.3) 

(3.4) 1 r(s )=r  
~ A J  expj -  A s S i 2 d s ’ - i h 8 + i h y  S’ ar(7) 

2~ - w r(s’)=r’ 

where &” is the normalization of the Wiener integral. The values taken by 8 / 4 ~  will be 
integral for closed curves and differ by integers for paths going off to infinity. One can 
bring (3.4) into the form of a single s integral by a parametric representation. Let us 
consider a vector field variable rk such that k.<k = 0, then it is an identity that 

X J a<( - ih j d3k(<k x <-k) .k) 
(3.5) 

where J”8< = J”II dck represents the integral over all the functions <k. The  identity is proved 
by writing <k = <k’-+-k x kk-2, and invoking k. <k = 0. In  terms of the Fourier trans- 
forms of <k and+,, div i = 0 and 

i i3c exp( - ih j < . curl ‘5 d3r - ih s <(r)+(r) d3r) 

If one takes 

+(r’> = J i(s)a{r’ - r(s)) cis (3.7) 
one has 

exp(ih2)  = 1 S< exp( - ih < curl < d3r - ih s <. i. ds) 

x (j S< exp( - ih J < curl i d3r j1-l . (3.8) 

Under the a[ integral one has a Markov process, one integral in ds, so the path integral 
becomes a differential equation as in I. Thus 

1 
Gg. = -s E T  dh G<G,(r, r’; s, s’; [i])W(<) exp(-iM) (3.9) 

where 

satisfies 
GA ( [<I 1 

a 1  
8s 6 

{-+-(V-ih<)2] G,([i]) = a(r-r’)S(s-s’) (3.10) 

and W(<) is the weight factor exp( -;As<. curl < d3r), normalized as in (3.8). 
At this point it is convenient to look at the series for Giv in terms of 5. This appears 

linearly and quadratically in the differential equation, so a convenient graphical repre- 
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sentation is to represent by a full line the solution Go of 

to represent iA [v, 1;] by a dotted line emerging from a full line, i.e. 

is represented by 
ihGo(r, a; $3 a)[V,, <(.)lGo(a, r’; U, s’) 

andtorepresent hzl;z by two dotted lines emerging from a full line: h2G07,2Go is representedas 

The  effect of integrating over 1; is to link up the dotted lines into closed dotted lines starting 
and ending in full lines 

D ~ ~ O  = f lka<? exp ( - ih f 1;. curl <)6~ 

(3.11) 

€ a b c k c  

= all n perm (i) S(k ,+k , )kzJ”exp(- ihJ”1; .~ur11; )6< (3.12) 

n ~ ( k , ) V ,  + k b ) .  
- - 

all perm k, ... k b  amongst k l , k z  ... 
The series for Gib([<]) is then represented by 

(3.13) 

P 

and upon integration over 1; by 

(3.15) 
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Written out explicitly one has 

x Go(y,r’; T , S ’ ) E ~ ~ ~ O ~ I X - Y I - ’  d3xd3ydad7 

x Go(y, r’; T’ ,  s’) d3x d3y da dT+ ... . (3.16) 
Readers familiar with quantum field theory will recognize the graphical series as that 
encountered in the quantum field theory of charged scalar mesons. They will also not be 
surprised to find that the first diagrams are divergent. In  electrodynamics the dotted line 
represents 

as against our 

and the full lines stem from the Klein-Gordon operator 

DUV k-2(6U”kkUkvJZ-2) 

O U R  = k-2kyEURY 

Go = ( k2 -m2) -1  

where m is the mass of the meson. Since the length here represented by s may be replaced 
by Fourier transform, i.e. let 

G(k; a) = exp( -c?s)G(r; s) exp(ik.r) d3r ds. 

This propagator is very close to that of the meson. However, quantum electrodynamics 
works in four dimensions, space and time, whilst here there are three dimensions. Now, 
in electrodynamics the divergences are not understood, but their influence has been circum- 
scribed by the renormalization theorems. The  idea of these theorems lies in the fact that 
the basic quantities appearing in Go will not be those observed in physical situations. Thus 
the pole of Go comes at k2 = m2. The physical mass is defined from the pole of the 
complete G, the equivalent of the present GAS Thus if one formally writes the solution 
in meson theory as 

(3.17) 

and defines 

{k2 - m2 + C ( k ,  m))G = 1 

m2+ C(m’, m) = m’2 

then 
{A2 - mr2  + X’(k, “))GI = 1 

(3.18) 

(3.19) 

and the pole of G’ comes now at m‘ and there is no contribution to the residue from E’. 
The  change m to m’ renormalizes the mass, from G to G’ the wave functions, and there 
is also in meson theory the need to renormalize the charge, here A. T h e  apparent non- 
linearity of transformation (3.18) is rather deceptive; in practice, one just has to throw 
away all divergences and this proves an easy matter in the perturbation expansion of I;. 
In  the present problem it all goes through. The  renormalization of m is mainly a change 
in effective step length, and of G amounts to a change of the entropy per unit length of 
the chain. One does not have to renormalize X since graphs of the type .,...., 0. ... 
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which do appear in electrodynamics, do not here. (Something like them appears in poly- 
merized material, but it is hoped to consider that in a later paper.) This is as well since 
X is intimately associated with integers as can be explicitly shown (see I), but not here. 
The proof of these statements in electrodynamics was first given by Salam, the key point 
being to order the diagrams and study the order of divergence of the diagrams. Kow, 
for every Fourier integration in a diagram there will be a dotted line and thus a d3kkK"k-2 
times factors from the G's. In  electrodynamics there is d4k k - 2  times the same factors from 
G's. Thus, although the present D is different and the dimensionality is different, the 
contribution from each dotted line is still k dk and, since the diagrams are the same, Salam's 
proof will hold. 

There are, of course, no divergences in the study of a real polymer system's topology. 
The divergences found here are a consequence of assuming the monomers being infini- 
tesimal, and by cutting off the offending integrals at a distance of the order of a monomer 
size one can hope to make it all physically sensible. But the theorem goes much further 
than this. It states that the effect of finite monomer size appears in ar, effective step length 
and an effective entropy per link. There are no further effects on the asymptotic behaviour 
of the topological properties of the polymer. Although one is now in a position to go on 
to calculate the probability of a closed Brownian path to have a certain value for its invariant, 
the problem of two paths interlocking seems of more interest, and so will be considered in 
a little rnore detail in the next section. 

4. The entanglement of a pair of molecules 

more molecules. The  simplest diagrams are (excluding those already given above) 
The  diagrammatic analysis of the previous section can be used also to discuss two or 

and interferences 

The  order of the diagrams is shown by A, but these now must carry indices. Diagrams 
( U )  ... (f) refer to simple entanglements where the second molecule does not get involved 
in knots in the first and vice versa ; this arises in diagrams (g), (h)  and higher order diagrams, 
whilst knots not involving the other molecules are given in the series in the previous section. 
For simplicity it will be assumed that the knottedness of the separate molecules has been 
absorbed as before, and the 'Lamb shift' diagrams (e), (f), etc., will be ignored. So one is 
now discussing the probability of the entanglement of molecules which are not self- 
entangled. The literature of electrodynamics carries an extensive discussion of these 
diagrams since they occur in a study of the relativistic theory of energy levels of, say, an 
electron-positron bound state, positronium. Following the work of Schwinger, and Bethe 
and Salpeter (1956j, one can rearrange the diagrams so that there are no repetitions in 
the sense that ( b )  is an iterate of (a) .  So, let us introduce 9 satisfying 

Gol-1G02-19+ J ( r l ,  r,; rl"r2")9(rl", r2"; rl' r2') d3rl" d3r," 

= S(Y, - Y1')6(Y2 - r2')6(s1 - Sl')6(S2 -SA') (4.3) 
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where 

and J(r,, rl’; r2, r2”) is chosen to give the diagrams 

f= + + + + 

2 2’/ 2 ‘2” 2- 2” /2 2“ 2“2” 
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(4.5) 

( C I )  cp, ( y )  ( 6 1  (E) 

taking it to order X2. The first two diagrams will contain S(rl-r~~‘)S(rZ-r2’’), etc. This 
rearrangement is such that, should one of the molecules be turned into a definite rather 
than Brownian path, for example, if Go is replaced by the function appropriate to a straight 
line, the exact differential equation of I is obtained. But because both paths are Brownian 
the present infinite series is needed. In  electrodynamics h plays the role of charge, and it 
is shown in the references cited that the problem is resolved in weak coupling by basing 
the calculation on B derived from the simplest approximation to 9. I n  the present 
problem one has to integrate over A, so that there appears no very good reason why the 
series for 3 should converge. Nevertheless, if one asks for the probability of high entangle- 
ment, i.e. large%, small A, and imposes boundary conditions on B(rl, rl’; r2, r2’) that rl, rl’ 
are far from r2, r2’, for that is compared with the natural size (LZ)1’2, then all the higher 
terms are small compared with ( E )  and (p) ,  since they all have dimension Y - ~ ,  but the 
higher terms all contain Go’s which yield exponential factors at large separation. Outside 
this condition we have not made much progress. Assuming then that the series for 9 
is good, one can further simplify by working at a particular problem. Writing B in terms of 

R = $(rl+r2) and S = 3(rl-r2) 
one can introduce 

r(S, S’) = %(II, rl’; r,, rz’) d3R d3R’ 

Further, one can take an average over lengths equivalent to studying the Laplace transform 

r(S, S ‘ ;  E) = / exp( - xL, - EL,) 9 dL, dL, d3R d3R‘ (4.7) 

Under these circumstances diagrams ( E ) ,  (y ) ,  (6) and ( E )  all vanish, for example ( E )  is 

As.(Lx?) s3 aR as 

whereas ( p )  is h2S-4, so that (absorbing constants like 1/6, etc.) 

{( ~ 2 + ~ y + x 2 ~ - 4 p y s ,  s’) = s(s- s). (4.8) 
This equation describes the mean behaviour of the simple entanglement of two chains, 
provided that their separation is not small. This is the simplest situation we have found, 
and from now on the treatment of r follows as in I, except that being a fourth-order 
differential equation it cannot be expressed in explicit terms, though there is no singularity 
in the equation and approximate solutions are readily obtained at small and large S. It 
is hoped to  return to quantitative solutions in a later publication. 

It is perhaps worth noting finally that, if the higher invariants were required, as would 
be noticeably the case when three or more molecules were highly entangled, the corres- 
ponding interactions would lie outside electrodynamics and enter a class which have only 
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been speculated upon in meson theory. For example, one would have things like 

v 

5. Conclusion 
This paper has done little more than set up the problem of the entanglement of random 

walks. But, given a technique for constructing invariants, and given the probabilities 
expressed in perturbation theory and in the various summations explored already in 
quantum theory, one is in a position to assess the difficulties involved in accurate solutions 
to entanglement problems. 

Problems of real polymers have other questions as well as these, and cruder methods 
will probably be needed to handle them (e.g. Edwards 1967 b); nevertheless, it is important 
to have an exact background against which to judge the accuracy of any approach. 
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Appendix 
The invariant was obtained in (2.9) in the form 

02 $ B, .dr3[1 - 2  1 d S , .  f drS(r, - R,)) + 2  1 (B, .dR,) 
ffZ 

where 

and the curve 1, intersects the surface S,, whose perimeter is r2 at the points z2, p2. 
Points in S, are denoted R,. T o  write this in a manifestly invariant way, it should not 
refer to S,  at all. T o  do this we note that 

dr38(r3-R2) = - ( 4 ~ r ) - ~ V , ~  dr31r3 -R,j 
= ( 4 ~ ) - ~ ( c u r l ,  curl, - grad, div,) dr,]r, - Rz/  -I. (A3 ) 

Then 

2 $ B, . dr, 1 dS, .I ' dr, 6(r3 - R,) 
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Now, by Stokes' theorem 

1 dS,.curl F = F.dr, f 
and if 

curl dr r,-r,I-, = B2(r3) i 2 1  

1 
- 27 c j  B, .dr, j d ~ ,  .curl,(curl,/' dr31r3- R,I -1) 

1 
277 

= - f B, .dr, 1' €3, dr, 
whilst 

1 
2n 

= -- 6 B, .dr, 1 dS, .  V21r3 - Rz/ 

where r30 is the origin of the dr, integral and, being a constant, is removed since 
$B,.dr, = 0. This can now be rearranged to 

Returning now to J:2 dR, . B, one can always arrange that the surface S, does not intersect 
some surface S,, which can be taken as making single valued a scalar potential repre- 
sentation for B,. Thus, if one writes 

B, = 041 (A1 1) 

2 J dR2 B1 = - 2 4 d 4  +2+,(P2) 

Using this representation also in (AlO), and also changing the coordinate system of r3 
to r3 + R,, the two integrals become 

1 
.Ids,. 2%- 7, $(dr.  ~ 2 ) ~ l ( r 3 + R 2 ) / r 3 ~ - 1 - - ~ ~ S Z ~ r 3 V 2 z 4 ( r 3 + ~ ~ ) ~ r 3 ~ - 1 .  2%- (A13) 

If we now invoke the vector identity 

( a x b ) . ( c x  d) = (a .c) . (b.d)-(a.d)(b.c)  

we may rewrite this expression as 
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But B, = v+,, so, returning to the original coordinate system, one has 

-!- J d S ,  x V2 1 dr, x B,lr3-R2[ 
2n 

which by Stokes' theorem yields 

--far2. 1 Jdr3xB,lr3-r2]-1.  
277 

Finally, one obtains 

(A15) 

(-416) 

since in our example $B, .dr, = 0. This form can be put in a more symmetrical form by 
integration by parts, and also by constructing the other invariants by permuting 12, 3 
and taking the various combinations of them. 

Clearly the same method can be used to construct invariants of an arbitrarily high 
order, corresponding to more complicated topological situations. 
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